— Reading —

1. Read text from p.418 (after proof of Cor. 9.3.2) to 422 (Th. 9.3.3)

- Exercise -

- 2. Reparametrization by arc length. Let *I* be an interval of \mathbb{R} and $u : I \to \mathbb{R}^n$ a regular \mathcal{C}^1 application (i.e. a \mathcal{C}^1 application such that $u'(t) \neq 0$ for every *t*). We fix a point $t_0 \in I$ and define the arc length *s* by $s(t) = \int_{t_0}^t ||u'(x)|| dx$. We define the curve Γ as $\Gamma = u(I)$.
 - (a) Show that *s* is a C^1 function on *I* and that s'(t) = ||u'(t)|| for every *t*.
 - (b) Show that *s* is a bijective function onto J := s(I) and that s^{-1} is C^1 on *J*.
 - (c) Finally, we define v on J by $v(t) = u(s^{-1}(t))$. Check that v is C^1 on J, that $v(J) = \Gamma$ and that ||v'(t)|| = 1 for every $t \in J$. *Hint: Use the relation* $v \circ s = u$.

— Problems —

- 3. Holomorphic function. Let U be an open set in \mathbb{R}^2 and $f = (f_1, f_2) : U \to \mathbb{R}^2$ a differentiable application. Let (a, b) be an element of U.
 - (a) Recall the form of the matrix of a rotation with center 0 in \mathbb{R}^2 with respect to an orthonormal basis.
 - (b) We assume that Df(a, b) is a direct similarity with center (0, 0) (i.e. the composition of a rotation and a homothety, both with center (0, 0)). Show that $\frac{\partial f_1}{\partial x}(a, b) = \frac{\partial f_2}{\partial y}(a, b)$ and $\frac{\partial f_1}{\partial y}(a, b) = -\frac{\partial f_2}{\partial x}(a, b)$.
 - (c) We assume that f is C^2 and that Df(a, b) is a direct similarity with center (0, 0). Show that the Laplacian of f_1 and f_2 at (a, b) is zero.
 - (d) We can associate to f a complex-valued function F as follow: for z = x + iy, we put $F(z) = f_1(x, y) + if_2(x, y)$. Show that f is differentiable at (a, b) and that df(a, b) is a direct similarity with center (0, 0) if and only if the ratio $\frac{F(z) F(a+ib)}{z (a+ib)}$ has a finite limit when z tends to a + ib. In this case, we note F'(a + ib) this limit. Express the angle and the ratio of Df(a, b) in function of F'(a + ib).
- 4. Differential calculus and statistics. One of the main tasks in statistics is to make an estimation of a parameter θ for a population $\{y_i \mid i \in \mathbb{Z}_{>0}\}$ based on an observation of sample $\{y_1, \ldots, y_n\}$ of the population. An *estimator* for the actual value θ_0 is a "function" $\hat{\theta}(y_1, \ldots, y_n)$ which converges to θ_0 when n tends to ∞ . The likehood of the system is the product $L(y_1, \ldots, y_n, \theta) = \prod_{i=1}^n l(y_i, \theta)$, where l is the density of the law describing the distribution of θ in the population. A function $\hat{\theta}(y_1, \ldots, y_n)$ which maximizes the number $L(y, \hat{\theta}(y))$ for every $y = (y_1, \ldots, y_n)$ is considered to be a good estimator and is called a *maximum likehood estimator*.
 - (a) We suppose that $l(y,\theta) = \frac{1}{\sqrt{\pi}} exp(-(y-\theta)^2)$. Show that, for every (y_1,\ldots,y_n) fixed, the likehood $\theta \mapsto L(y_1,\ldots,y_n;\theta)$ admits a global maximum obtained for $\theta = \frac{y_1+\cdots+y_n}{n}$.
 - (b) Find a maximum likehood estimator for $l(y, \theta) = \theta exp(-\theta y)$ when y > 0 and $l(y, \theta) = 0$ otherwise.